This article was downloaded by:
On: 25 January 2011
Access details: Access Details: Free Access
Publisher Taylor \& Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 3741 Mortimer Street, London W1T 3JH, UK

Journal of Sulfur Chemistry

Publication details, including instructions for authors and subscription information:
http://www.informaworld.com/smpp/title \sim content=t713926081

Rearrangement of the tert-butyl group of 5,6-di-tert-butyl-2,3,7-trithiabicylo-5-ene 7-endoxide

Sanae Yoshida ${ }^{\text {a }}$; Yuta Morohashia; Takashi Fujihara ${ }^{\text {a }}$; Yoshiaki Sugihara ${ }^{\text {á }}$; Juzo Nakayama ${ }^{\text {a }}$ ${ }^{\text {a }}$ Department of Chemistry, Graduate School of Science and Engineering, Saitama University, Sakuraku, Saitama, Japan

To cite this Article Yoshida, Sanae, Morohashi, Yuta, Fujihara, Takashi, Sugihara, Yoshiaki and Nakayama, Juzo(2008) 'Rearrangement of the tert-butyl group of 5,6-di-tert-butyl-2,3,7-trithiabicylo-5-ene 7-endoxide', Journal of Sulfur Chemistry, 29: 1, 1-7
To link to this Article: DOI: 10.1080/17415990701753373
URL: http://dx.doi.org/10.1080/17415990701753373

PLEASE SCROLL DOWN FOR ARTICLE

> Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf
> This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.
> The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

RESEARCH ARTICLE

Rearrangement of the tert-butyl group of 5,6-di-tert-butyl-2,3,7-trithiabicylo-5-ene 7-endoxide

Sanae Yoshida, Yuta Morohashi, Takashi Fujihara, Yoshiaki Sugihara and Juzo Nakayama*
Department of Chemistry, Graduate School of Science and Engineering, Saitama University, Sakura-ku, Saitama, Japan

(Received 22 August 2007; final version received 11 October 2007)

Abstract

Treatment of 5,6-di-tert-butyl-2,3,7-trithiabicylo-5-ene 7-endoxide with trimethylsilyl trifluoromethanesulfonate at room temperature resulted in the rearrangement of tert-butyl group to furnish 4,6-di-tert-butyl-2,3,7-trithiabicylo-5-ene 7 -endoxide quantitatively. Meanwhile, treatment of the compound by trimethyloxonium tetrafluoroborate afforded 4,5-di-tert-butyl-1,2-dithiin 1,1-dioxide in addition to the above rearrangement product.

Keywords: rearrangement; 2,3,7-trithiabicylo-5-ene 7-oxide; 1,2-dithiin; trimethylsilyl trifluoromethanesulfonate; trimethyloxonium tetrafluoroborate

1. Introduction

We have been investigating small molecules of sulfur such as diatomic sulfur $\left(\mathrm{S}_{2}\right)$, sulfur monoxide (SO) (1), disulfur monoxide $(S=S=O)(2-5)$, and triatomic sulfur $(S=S=S)(5)$. We thus reported that compound $\mathbf{2}$, which is easily obtainable by oxidation of $\mathbf{1}$ with dimethyldioxirane, undergoes a retro-Diels-Alder reaction to give thiophene 1-oxide $\mathbf{3}$ and $\mathrm{S}=\mathrm{S}=\mathrm{O}$ (5). In this connection, we have now investigated the Pummerer reaction of $\mathbf{1}$ with expectation that if the Pummerer product 4 formed, it would undergo a retro-Diels-Alder reaction to generate singlet diatomic sulfur $\left({ }^{1} \mathrm{~S}_{2}\right)$. Incidentally, $\mathbf{1}$ is thermally stable and does not show any tendency to undergo a retro-DielsAlder reaction to generate $S_{2}(5)$. During this study, we have now found that treatment of $\mathbf{1}$ with trimethylsilyl trifluoromethanesulfonate $\left(\mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{SiMe}_{3}\right)$ results in the rearrangement of tert-butyl group to give 6 (Scheme 1).

2. Results and discussion

Initially, we have treated 1 with $\left(\mathrm{CH}_{3} \mathrm{CO}\right)_{2} \mathrm{O}$ or with $\left(\mathrm{CF}_{3} \mathrm{CO}\right)_{2} \mathrm{O}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ or without the solvent at room temperature, but no reaction took place. The reaction, carried out under more

[^0]

Scheme 1.
forcing conditions, gave intractable mixtures. Then, $\mathbf{1}$ was treated with a stronger electrophile, $\mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{SiMe}_{3}$. Thus treatment of $\mathbf{1}$ with one molar equivalent of this reagent produced $\mathbf{6}$ in 92% yield with recovery of 1 in 6% at room temperature, whereas the use of 0.1 molar equivalent of the reagent gave 6 only in a low yield ($91: 9$ mixture of 1 and 6). On the other hand, the use of ten molar equivalents gave 6 quantitatively. Although the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral data revealed that 6 has a partial structure of $-\mathrm{C}\left({ }^{t} \mathrm{Bu}\right)=\mathrm{CH}-\mathrm{CH}\left({ }^{t} \mathrm{Bu}\right)-$, we could not determine its structure unequivocally, including the stereochemistry of the $S=O$ group, the existence of which was suggested by the IR spectrum. Thus, the structure elucidation was done by X-ray diffraction analysis. Figure 1 shows the molecular structure of $\mathbf{6}$ in which the stereochemistry of the $\mathrm{S}=\mathrm{O}$ group of \mathbf{l} is retained. The relevant structural data of $\mathbf{6}$ are summarized in Table 1.

Next, reactions of $\mathbf{1}$ with $\mathrm{BF}_{3} \bullet \mathrm{Et}_{2} \mathrm{O}$ and $\mathrm{Me}_{3} \mathrm{O}^{+} \mathrm{BF}_{4}^{-}$were examined to know more about the rearrangement. The reaction with $\mathrm{BF}_{3} \bullet \mathrm{Et}_{2} \mathrm{O}$ proceeded slowly at room temperature to give 6 in 31% yield with recovery of $\mathbf{1}$ in 64% after 5 days and the reaction in refluxing CHCl_{3} gave $\mathbf{6}$ in 83% yield with recovery of $\mathbf{1}$ in 10% after 24 h . On the other hand, treatment of $\mathbf{1}$ with $\mathrm{Me}_{3} \mathrm{O}^{+} \mathrm{BF}_{4}^{-}$at room temperature gave $\mathbf{6}, 4,5$-di-tert-butyl-1,2-dithiin 1,1-dioxide (7), and 3,4-di-tert-butylthiophene ($\mathbf{8}$) in $11 \%, 19 \%$, and 31% yields, respectively, with recovery of $\mathbf{1}$ in 27%. The vinyl protons of 7 appeared as singlet at $\delta 6.96$ and 7.17 in the ${ }^{1} \mathrm{H}$ NMR and the two sp^{2} carbons carrying tert-butyl group appeared at characteristic low fields of $\delta 152.0$ and 160.8 in the ${ }^{13} \mathrm{C}$ NMR, and the IR spectrum showed asymmetric and symmetric absorptions of the SO_{2} group at 1316 and $1134 \mathrm{~cm}^{-1}$, respectively (Scheme 2).

Figure 1. ORTET plot of molecular structure of $\mathbf{6}$.

Table 1. Selected bond lengths, bond angles, and dihedral angles from the X-ray structure of 6 .

Bond lengths [Å] and angles [$\left.{ }^{\circ}\right]$ for 6	
$\mathrm{C}(1)-\mathrm{C}(4) 1.484(3)$	$\mathrm{C}(4)-\mathrm{C}(1)-\mathrm{S}(2) 109.99(14)$
$\mathrm{C}(1)-\mathrm{S}(2) 1.853(2)$	$\mathrm{C}(4)-\mathrm{C}(1)-\mathrm{S}(1) 98.01(13)$
$\mathrm{C}(1)-\mathrm{S}(1) 1.873(2)$	$\mathrm{S}(2)-\mathrm{C}(1)-\mathrm{S}(1) 104.69(10)$
$\mathrm{C}(2)-\mathrm{C}(3) 1.494(3)$	$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{S}(3) 111.92(15)$
$\mathrm{C}(2)-\mathrm{S}(3) 1.824(2)$	$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{S}(1) 100.28(14)$
$\mathrm{C}(2)-\mathrm{S}(1) 1.832(2)$	$\mathrm{S}(3)-\mathrm{C}(2)-\mathrm{S}(1) 107.14(11)$
$\mathrm{C}(3)-\mathrm{C}(4) 1.329(3)$	$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(2) 109.66(19)$
$\mathrm{O}(1)-\mathrm{S}(1) 1.4803(18)$	$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(1115.04(19)$
$\mathrm{S}(2)-\mathrm{S}(3) 2.0676(8)$	$\mathrm{O}(1)-\mathrm{S}(1)-\mathrm{C}(2) 110.89(10)$
	$\mathrm{O}(1)-\mathrm{S}(1)-\mathrm{C}(1) 111.60(10)$
	$\mathrm{C}(2)-\mathrm{S}(1)-\mathrm{C}(1) 83.26(9)$
	$\mathrm{C}(1)-\mathrm{S}(2)-\mathrm{S}(3) 96.46(7)$
	$\mathrm{C}(2)-\mathrm{S}(3)-\mathrm{S}(2) 95.82(7)$
$\mathrm{S}(3)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)-73.7(2)$	D
$\mathrm{S}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4) 39.7(2)$	$\mathrm{S}(2)-\mathrm{C}(1)-\mathrm{S}(1)-\mathrm{O}(1) 157.35(13)-\mathrm{O}(1) 44.16(13)$
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(1)-2.1(3)$	$\mathrm{C}(4)-\mathrm{C}(1)-\mathrm{S}(1)-\mathrm{C}(2) 47.51(14)$
$\mathrm{S}(2)-\mathrm{C}(1)-\mathrm{C}(4)-\mathrm{C}(3) 73.7(2)$	$\mathrm{S}(2)-\mathrm{C}(1)-\mathrm{S}(1)-\mathrm{C}(2)-65.69(10)$
$\mathrm{S}(1)-\mathrm{C}(1)-\mathrm{C}(4)-\mathrm{C}(3)-35.2(2)$	$\mathrm{C}(4)-\mathrm{C}(1)-\mathrm{S}(2)-\mathrm{S}(3)-61.03(14)$
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{S}(1)-\mathrm{O}(1)-160.65(14)$	$\mathrm{S}(1)-\mathrm{C}(1)-\mathrm{S}(2)-\mathrm{S}(3) 43.38(9)$
$\mathrm{S}(3)-\mathrm{C}(2)-\mathrm{S}(1)-\mathrm{O}(1)-43.72(14)$	$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{S}(3)-\mathrm{S}(2) 65.38(15)$
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{S}(1)-\mathrm{C}(1)-50.06(14)$	$\mathrm{S}(1)-\mathrm{C}(2)-\mathrm{S}(3)-\mathrm{S}(2)-43.61(10)$
$\mathrm{S}(3)-\mathrm{C}(2)-\mathrm{S}(1)-\mathrm{C}(1) 66.88(11)$	$\mathrm{C}(1)-\mathrm{S}(2)-\mathrm{S}(3)-\mathrm{C}(2)-0.86(10)$

Scheme 2.

Next, we have synthesized compounds $\mathbf{9}$ and $\mathbf{1 0}$, and examined the reaction with $\mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{SiMe}_{3}$. It is well documented that Diels-Alder reactions of 3 takes place exclusively at the syn- π-face to the $\mathrm{S}=\mathrm{O}$ bond $(6,7)$. Thus, compounds 9 (7) and 10 were prepared by Diels-Alder reactions of $\mathbf{3}$ with cyclopentene and 1,4-cyclohexadiene, respectively. However, compound 9 did not undergo any reaction even when heated with a large excess of $\mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{SiMe}_{3}$ in refluxing CHCl_{3}. Meanwhile, heating $\mathbf{1 0}$ with a large excess of $\mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{SiMe}_{3}$ in refluxing 1,2-dichloroethane for 5 days resulted in the migration of the double bond to provide a mixture of $\mathbf{1 1}$ and $\mathbf{1 0}$ in the ratio 96:4. No rearrangement of the tert-butyl group was observed. The structure of $\mathbf{1 1}$ was determined by independent synthesis: the Diels-Alder reaction of $\mathbf{3}$ with 1,3-cylohexadiene gave $\mathbf{1 1}$ in $\mathbf{9 1 \%}$ yield. $\mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{H}$, even if existed in the reaction mixture as impurity, would not be involved in the above isomerization because $\mathbf{1 1}$ was not formed when $\mathbf{1 0}$ was heated with $\mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{H}$ in CDCl_{3} in a sealed NMR tube at $70^{\circ} \mathrm{C}$ for 4 days. DFT calculations predicted that $\mathbf{1 1}$ is a more stable isomer than $\mathbf{1 0}$ by $3.34 \mathrm{kcal} / \mathrm{mol}$ (B3LYP/6-31G** level) (8) (Scheme 3).

The following mechanism is proposed for the isomerization of $\mathbf{1}$ to $\mathbf{6}$. A hard electrophile $\mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{SiMe}_{3}$ initially reacts with the oxygen atom of the $\mathrm{S}=\mathrm{O}$ to give sulfonium ion intermediate 12, which undergoes ring-opening to produce carbonium ion $\mathbf{1 3}$ stabilized by the double

3

Scheme 3.
bond and the sulfur atom. Since $\mathbf{9}$ and $\mathbf{1 0}$ do not undergo the rearrangement of the tert-group, stabilization by the sulfur atom would be crucial to the ring-opening of $\mathbf{1 2}$. Then the position exchange takes place between hydrogen and tert-butyl group to afford another carbonium ion $\mathbf{1 5}$ via 14. DFT calculations predicted that $\mathbf{1 6 a}$ is more stable than $\mathbf{1 6 b}$ by $6.4 \mathrm{kcal} / \mathrm{mol}$. Thus, cyclization of $\mathbf{1 5}$ produces more stable 16a selectively. Finally elimination of $\mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{SiMe}_{3}$ from 16a would complete the isomerization to 6 . If this mechanism is operative, a catalytic amount of $\mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{SiMe}_{3}$ could cause the complete isomerization of $\mathbf{1}$ to $\mathbf{6}$, even though the conversion is slow. However, for example, the use of 0.1 molar amount of $\mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{SiMe}_{3}$ produced $\mathbf{6}$ only in 9% yield. This is the weak point of this mechanism (Scheme 4).

As to the formation of 7, the following is proposed tentatively. $\mathrm{Me}_{3} \mathrm{O}^{+} \mathrm{BF}_{4}^{-}$is a softer nucleophile than $\mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{SiMe}_{3}$. Thus it undergoes competitive methylation of the oxygen and sulfur

16b

Scheme 4.

18

Scheme 5.
atoms to produce $\mathbf{1 2}$ and 18 , respectively. Then 18 undergoes a series of reactions, shown in Scheme 5, to give $\mathbf{7}$ (9). Hydrolysis of $\mathbf{1 9}$ to $\mathbf{2 0}$ may occur during work-up procedure.

3. Experimental

3.1. Rearrangement of 5,6-di-tert-butyl-2,3,7-trithiabicylo-5-ene 7-endoxide (1) to 4,6-di-tert-butyl-2,3,7-trithiabicylo-5-ene 7-endoxide (6) by $\mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{SiMe}_{3}$

A mixture of $1(200 \mathrm{mg}, 0.72 \mathrm{mmol})$ and $\mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{SiMe}_{3}(161 \mathrm{mg}, 0.72 \mathrm{mmol})$ in $\mathrm{CHCl}_{3}(16 \mathrm{~mL})$ was stirred at room temperature for 2 days. The reaction was quenched by addition of iced-water, washed with aqueous NaHCO_{3} and brine, and dried over MgSO_{4}. The CHCl_{3} was evaporated and the residue was subjected to silica gel column chromatography. Elution of the column with hexane: AcOEt (3:1) gave $6(184 \mathrm{mg}, 92 \%)$ and then $1(11 \mathrm{mg}, 6 \%)$.

The reaction, carried out by using 10 molar equivalents of $\mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{SiMe}_{3}$ at room temperature for one day, gave 6 quantitatively. On the other hand, the reaction, carried out by using 0.1 molar equivalent of $\mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{SiMe}_{3}$ at room temperature for 3 days, gave a $91: 9$ mixture of 1 and 6 .
6. Yellow crystals (from $\mathrm{Et}_{2} \mathrm{O}$). Mp: $144.5-145^{\circ} \mathrm{C}$ (dec.). IR (KBr): $1065 \mathrm{~cm}^{-1}(\mathrm{~S}=\mathrm{O}) .{ }^{1} \mathrm{H} \mathrm{NMR}$ $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.18(\mathrm{~s}, 9 \mathrm{H}), 1.33(\mathrm{~s}, 9 \mathrm{H}), 5.12(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.79(\mathrm{~d}, J=1.1 \mathrm{~Hz}$, $1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100.5 MHz, CDCl_{3}): 29.20, 29.35, 33.85, 35.75, 75.67, 104.59, 119.48, 146.54. MS (EI, 70 eV$): \mathrm{m} / \mathrm{z} 286\left(\mathrm{M}^{+}\right) . \mathrm{UV}\left(\mathrm{CH}_{3} \mathrm{CN}\right) \lambda_{\max }(\varepsilon): 281$ (570), $346 \mathrm{~nm}(37, \mathrm{sh})$. Anal. Calcd. for $\mathrm{C}_{12} \mathrm{H}_{30} \mathrm{OS}_{3}: \mathrm{C}, 52.13 ; \mathrm{H}, 7.29$. Found: C, 52.23; H, 7.29.

3.2. Rearrangement of 5,6-di-tert-butyl-2,3,7-trithiabicylo-5-ene 7-endoxide (1) to 6-di-tert-butyl-2,3,7-trithiabicylo-5-ene 7-endoxide (6) by $\mathrm{BF}_{3} \bullet \mathrm{Et}_{2} \mathrm{O}$

A mixture of $1(50 \mathrm{mg}, 0.18 \mathrm{mmol})$ and $\mathrm{BF}_{3} \bullet \mathrm{Et}_{2} \mathrm{O}(46 \mu \mathrm{~L}, 0.37 \mathrm{mmol})$ in $\mathrm{CHCl}_{3}(4 \mathrm{~mL})$ was stirred at room temperature for 5 days to give $6(15 \mathrm{mg}, 31 \%)$ and the starting material (32 mg , $64 \%)$. On the other hand, heating a mixture of $1(50 \mathrm{mg}, 0.18 \mathrm{mmol})$ and $\mathrm{BF}_{3} \bullet \mathrm{Et}_{2} \mathrm{O}(46 \mu \mathrm{~L}$, $0.37 \mathrm{mmol})$ in $\mathrm{CHCl}_{3}(4 \mathrm{~mL})$ at reflux for one day gave $42 \mathrm{mg}(83 \%)$ of $\mathbf{6}$ and the starting material ($5 \mathrm{mg}, 10 \%$).

3.3. Reaction of 5,6-di-tert-butyl-2,3,7-trithiabicylo-5-ene 7-endoxide (1) by trimethyloxonium tetrafluroborate

A mixture of $1(50 \mathrm{mg}, 0.18 \mathrm{mmol})$ and $\mathrm{Me}_{3} \mathrm{O}^{+} \mathrm{BF}_{4}^{-}(32 \mathrm{mg}, 0.21 \mathrm{mmol})$ in $\mathrm{CHCl}_{3}(4 \mathrm{~mL})$ was stirred at room temperature for 4 days. The reaction mixture was purified by silica gel column chromatography to give 11 mg (31%) of 3,4-di-tert-butylthiophene ($\mathbf{8}$), 9 mg (19%) of 4,5 -di-tert-butyl-1,2-dithiin 1,1-dioxide (7), 5 mg (11%) of $\mathbf{6}$, and $14 \mathrm{mg}(27 \%)$ of the starting material.
7. Colorless needles (from pentane). Mp: 74.5-75.5 ${ }^{\circ} \mathrm{C}$. IR (KBr): $1316,1134 \mathrm{~cm}^{-1}\left(\mathrm{SO}_{2}\right)$. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.29(\mathrm{~s}, 9 \mathrm{H}), 1.36(\mathrm{~s}, 9 \mathrm{H}), 6.96(\mathrm{~s}, 1 \mathrm{H}), 7.17(\mathrm{~s} 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 31.51,32.09,38.24,38.72,115.77$, 137.45, 152.06, 160.80. MS (EI, $70 \mathrm{eV}): \mathrm{m} / \mathrm{z} 260\left(\mathrm{M}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{O}_{2} \mathrm{~S}_{2}$: C, 55.34; H, 7.74. Found: C, 55.48; H, 7.70.

3.4. Preparation of 10 by Diels-Alder reaction of 3 with 1,4-cyclohexadiene

Thiophene 1-oxide $\mathbf{3}$ ($213 \mathrm{mg}, 1 \mathrm{mmol}$) and 1,4-cyclohexadiene ($3 \mathrm{~mL}, 32 \mathrm{mmol}$) were heated at $100^{\circ} \mathrm{C}$ in a sealed tube for 18 h . The excess diene was evaporated and the residue was purified by silica gel column chromatography to give 145 mg (50%) of $\mathbf{1 0}$. Colorless plates (from hexane). Mp: 148.0-148.5 ${ }^{\circ} \mathrm{C}$. IR (KBr): $1074 \mathrm{~cm}^{-1}(\mathrm{~S}=\mathrm{O}) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.26(\mathrm{~s}, 18 \mathrm{H})$, $1.85-1.91(\mathrm{~m}, 2 \mathrm{H}), 2.31-2.34(\mathrm{~m}, 2 \mathrm{H}), 2.95-2.98(\mathrm{~m}, 2 \mathrm{H}), 3.89(\mathrm{broad} \mathrm{t}, J=1.7 \mathrm{~Hz}, 2 \mathrm{H}), 5.92-$ $5.94(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 26.32,32.57,34.26,35.86,69.41,128.89,142.92$. MS (EI, 70 eV): m/z $292\left(\mathrm{M}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{28} \mathrm{OS}: \mathrm{C}, 73.92$; H, 9.65. Found: C, 73.75; H, 9.74.

3.5. Rearrangement of 10 to 11 by $\mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{SiMe}_{3}$

A mixture of $\mathbf{1 0}(29 \mathrm{mg}, 0.1 \mathrm{mmol})$ and $\mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{SiMe}_{3}(0.18 \mathrm{~mL}, 1 \mathrm{mmol})$ in 1,2-dichloroethane $(5 \mathrm{~mL}$) was heated at reflux for 5 days. The reaction gave a $96: 4$ mixture of $\mathbf{1 1}$ and $\mathbf{1 0}$. Compound $\mathbf{1 1}$ could not be isolated in pure form despite many efforts. Thus, the authentic sample of $\mathbf{1 1}$ was obtained by alternative synthesis. The reaction, carried out by using one molar equivalent of $\mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{SiMe}_{3}$ at room temperature for 5 days, resulted in the quantitative recovery of $\mathbf{1 0}$, and the reaction, carried out in refluxing CHCl_{3} for 5.5 h by using two molar equivalents of $\mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{SiMe}_{3}$ gave a 37:63 mixture of $\mathbf{1 1}$ and $\mathbf{1 0}$.

3.6. Preparation of 11 by Diels-Alder reaction of 3 with 1,3-cyclohexadiene

Thiophene 1-oxide $\mathbf{3}(50 \mathrm{mg}, 0.24 \mathrm{mmol})$ and 1,3-cyclohexadiene ($1.5 \mathrm{~mL}, 16 \mathrm{mmol}$) were heated at $100^{\circ} \mathrm{C}$ in a sealed tube for 3 days. The excess diene was evaporated and the residue was purified by silica gel column chromatography to give $64 \mathrm{mg}(91 \%)$. Colorless plates (from cyclohexane). Mp: $146.5-147.5^{\circ} \mathrm{C} . \operatorname{IR}(\mathrm{KBr}): 1073 \mathrm{~cm}^{-1}(\mathrm{~S}=\mathrm{O}) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.22(\mathrm{~s}, 9 \mathrm{H})$, $1.25(\mathrm{~s}, 9 \mathrm{H}), 1.22-1.25(\mathrm{~m}, 1 \mathrm{H}), 1.81-1.88(\mathrm{~m}, 1 \mathrm{H}), 1.97-1.99(\mathrm{~m}, 2 \mathrm{H}), 2.91-2.98(\mathrm{~m}, 1 \mathrm{H}), 3.27$ (broad d, $J=9.9 \mathrm{~Hz}, 1 \mathrm{H}$), $3.96(\mathrm{~s}, 1 \mathrm{H}), 3.97(\mathrm{~s}, 1 \mathrm{H}), 5.78$ (broad d, $J=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.92-5.98$ $(\mathrm{m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 23.78,24.12,32.46,32.65,33.18,33.68,33.96,34.24$, 69.41, 69.91, 127.34, 130.10, 142.11, 142.57. MS (EI, 70 eV): m/z 292 (M ${ }^{+}$). Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{28}$ OS: C, 73.92; H, 9.65. Found: C, 74.06; H, 9.73.

3.7. X-Ray crystallographic analysis data of 6

Crystal data for 6 were recorded on a Bruker SMART APEX CCD area detector by using 0.30°-wide ω scans and graphite-monochromated Mo-Ka radiation ($\lambda=0.71073 \AA$). Frame
data ($20 \mathrm{~s}, 0.30^{\circ}$-wide ω scans) were collected using the Bruker SMART software package. Peak integration was performed by the Bruker SAINT-Plus software package. Absorption correction was made by the software SADABS. Space group determination was done by the software XPREP. All calculations were performed by the Bruker SHELXTL 5.1 software package. The structure was solved by direct methods and refined with full-matrix least-squares by all independent reflections. The non-hydrogen atoms were refined anisotropically, and hydrogen atoms were placed at calculated positions. 6: C12H20OS3, $\mathrm{M}=276.46$, tetragonal, space group P-42(1) $\mathrm{c} ; \mathrm{a}=17.0735(5), \mathrm{b}=17.0735(5), \mathrm{c}=9.8863(4) \AA ; \mathrm{Z}=8 ; \mathrm{V}=2881.90(17) \AA^{3}$, $\mathrm{Dc}=1.274 \mathrm{~g} / \mathrm{cm}^{3}, \mu=0.494 \mathrm{~mm}^{-1}$; measured reflections 20734, independent reflections 3449 $[\mathrm{R}($ int $)=0.0425], \mathrm{R}=0.0409, \mathrm{Rw}=0.0919, \mathrm{GOF}=1.083$. (Crystallographic data for the structural analysis have been deposited at the Cambridge Crystallographic Data Center, CCDC No. 656812 for 6 . Copies of this information can be obtained from The Director, DDCD, 12 Union Road, Cambridge CB2 1EZ, UK (Fax: +44-1223-336033; Email: deposit@ccdc.ac.uk or http://www.ccdc.cam.ac.uk).)

References

(1) Nakayama, J.; Tajima, Y.; Piao, X.-H.; Sugihara, Y. J. Am. Chem. Soc. 2007, 129, 7250.
(2) Ishii, A.; Nakabayashi, M.; Nakayama, J. J. Am. Chem. Soc. 1999, 121, 7959.
(3) Ishii, A.; Nakabayashi, M.; Jin, Y.-N.; Nakayama, J. Organomet. Chem. 2000, 611, 127.
(4) Ishii, A.; Kawai, T.; Tekura, K.; Oshida, H.; Nakayama, J. Angew. Chem., Int. Ed. 2001, 40, 1924.
(5) Nakayama, J.; Aoki, S.; Takayama, J.; Sakamoto, A.; Sugihara, Y.; Ishii, A. J. Am. Chem. Soc. 2004, 126, 9085.
(6) Otani, T.; Takayama, J.; Suighara, Y.; Ishii, A.; Nakayama, J. J. Am. Chem. Soc. 2003, 125, 8255.
(7) Takayama, J.; Sugihara, Y.; Takayanagi, T.; Nakayama, J. Tetrahedron Lett. 2005, 46, 4165.
(8) Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Montgomery Jr, J.A.; Vreven, T.; Kudin, K.N.; Burant, J.C et al., Pople, J. A. Gaussian 03, Revision B. 05; Gaussian: Wallingford CT, 2004.
(9) For vic-disulfoxide, see Ishii, A.; Nakabayashi, M.; Nakayama, J. J. Am. Chem. Soc. 1999, 121, 7959 and references cited therein.

[^0]: *Corresponding author. Email: nakayama@mail.saitama-u.ac.jp

